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5.2 Independence and Dimension

Some spanning sets are better than others. If U = span{x1, x2, . . . , xk} is a subspace of Rn,
then every vector in U can be written as a linear combination of the xi in at least one way. Our
interest here is in spanning sets where each vector in U has a exactly one representation as a linear
combination of these vectors.

Linear Independence

Given x1, x2, . . . , xk in Rn, suppose that two linear combinations are equal:

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk

We are looking for a condition on the set {x1, x2, . . . , xk} of vectors that guarantees that this
representation is unique; that is, ri = si for each i. Taking all terms to the left side gives

(r1 − s1)x1 +(r2 − s2)x2 + · · ·+(rk − sk)xk = 0

so the required condition is that this equation forces all the coefficients ri − si to be zero.

Definition 5.3 Linear Independence in Rn

With this in mind, we call a set {x1, x2, . . . , xk} of vectors linearly independent (or
simply independent) if it satisfies the following condition:

If t1x1 + t2x2 + · · ·+ tkxk = 0 then t1 = t2 = · · ·= tk = 0

We record the result of the above discussion for reference.

Theorem 5.2.1
If {x1, x2, . . . , xk} is an independent set of vectors in Rn, then every vector in
span{x1, x2, . . . , xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us say that a linear
combination vanishes if it equals the zero vector, and call a linear combination trivial if every
coefficient is zero. Then the definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear combination that vanishes
is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:
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Independence Test

To verify that a set {x1, x2, . . . , xk} of vectors in Rn is independent, proceed as follows:

1. Set a linear combination equal to zero: t1x1 + t2x2 + · · ·+ tkxk = 0.

2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

Example 5.2.1

Determine whether {(1, 0, −2, 5), (2, 1, 0, −1), (1, 1, 2, 1)} is independent in R4.

Solution. Suppose a linear combination vanishes:

r(1, 0, −2, 5)+ s(2, 1, 0, −1)+ t(1, 1, 2, 1) = (0, 0, 0, 0)

Equating corresponding entries gives a system of four equations:

r+2s+ t = 0, s+ t = 0, −2r+2t = 0, and 5r− s+ t = 0

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are independent by
the independence test.

Example 5.2.2

Show that the standard basis {e1, e2, . . . , en} of Rn is independent.

Solution. The components of t1e1 + t2e2 + · · ·+ tnen are t1, t2, . . . , tn (see the discussion
preceding Example 5.1.6) So the linear combination vanishes if and only if each ti = 0.
Hence the independence test applies.

Example 5.2.3

If {x, y} is independent, show that {2x+3y, x−5y} is also independent.

Solution. If s(2x+3y)+ t(x−5y) = 0, collect terms to get (2s+ t)x+(3s−5t)y = 0. Since
{x, y} is independent this combination must be trivial; that is, 2s+ t = 0 and 3s−5t = 0.
These equations have only the trivial solution s = t = 0, as required.

Example 5.2.4

Show that the zero vector in Rn does not belong to any independent set.



5.2. Independence and Dimension 275

Solution. No set {0, x1, x2, . . . , xk} of vectors is independent because we have a
vanishing, nontrivial linear combination 1 ·0+0x1 +0x2 + · · ·+0xk = 0.

Example 5.2.5

Given x in Rn, show that {x} is independent if and only if x 6= 0.

Solution. A vanishing linear combination from {x} takes the form tx = 0, t in R. This
implies that t = 0 because x 6= 0.

The next example will be needed later.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution. We illustrate the case with 3 leading 1s; the general case is analogous. Suppose R

has the form R =


0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0

 where ∗ indicates a nonspecified number. Let R1,

R2, and R3 denote the nonzero rows of R. If t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then
t2 = 0, and finally t3 = 0. The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗)+(0, 0, 0, t2, ∗, ∗)+(0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0)

Equating second entries show that t1 = 0, so the condition becomes t2R2 + t3R3 = 0. Now the
same argument shows that t2 = 0. Finally, this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in Rn is called linearly dependent (or simply dependent) if it is not linearly
independent, equivalently if some nontrivial linear combination vanishes.

Example 5.2.7

If v and w are nonzero vectors in R3, show that {v, w} is dependent if and only if v and w
are parallel.

Solution. If v and w are parallel, then one is a scalar multiple of the other
(Theorem 4.1.4), say v = aw for some scalar a. Then the nontrivial linear combination
v−aw = 0 vanishes, so {v, w} is dependent.
Conversely, if {v, w} is dependent, let sv+ tw = 0 be nontrivial, say s 6= 0. Then v =− t

sw
so v and w are parallel (by Theorem 4.1.4). A similar argument works if t 6= 0.

With this we can give a geometric description of what it means for a set {u, v, w} in R3 to
be independent. Note that this requirement means that {v, w} is also independent (av+bw = 0
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means that 0u+ av+ bw = 0), so M = span{v, w} is the plane containing v, w, and 0 (see the
discussion preceding Example 5.1.4). So we assume that {v, w} is independent in the following
example.

Example 5.2.8

u

v

w
M

{u, v, w} independent

u
v

w
M

{u, v, w} not independent

Let u, v, and w be nonzero vectors in R3 where {v, w}
independent. Show that {u, v, w} is independent if and only
if u is not in the plane M = span{v, w}. This is illustrated
in the diagrams.

Solution. If {u, v, w} is independent, suppose u is in the
plane M = span{v, w}, say u = av+bw, where a and b are
in R. Then 1u−av−bw = 0, contradicting the independence
of {u, v, w}.
On the other hand, suppose that u is not in M; we must show
that {u, v, w} is independent. If ru+ sv+ tw = 0 where r,
s, and t are in R3, then r = 0 since otherwise u =− s

r v+ −t
r w

is in M. But then sv+ tw = 0, so s = t = 0 by our assumption.
This shows that {u, v, w} is independent, as required.

By the inverse theorem, the following conditions are equivalent for an n×n matrix A:

1. A is invertible.

2. If Ax = 0 where x is in Rn, then x = 0.

3. Ax = b has a solution x for every vector b in Rn.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are meaningful for any
matrix A and, in fact, are related to independence and spanning. Indeed, if c1, c2, . . . , cn are the

columns of A, and if we write x =


x1
x2

...
xn

, then

Ax = x1c1 + x2c2 + · · ·+ xncn

by Definition 2.5. Hence the definitions of independence and spanning show, respectively, that
condition 2 is equivalent to the independence of {c1, c2, . . . , cn} and condition 3 is equivalent to
the requirement that span{c1, c2, . . . , cn} = Rm. This discussion is summarized in the following
theorem:

Theorem 5.2.2
If A is an m×n matrix, let {c1, c2, . . . , cn} denote the columns of A.

1. {c1, c2, . . . , cn} is independent in Rm if and only if Ax = 0, x in Rn, implies x = 0.
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2. Rm = span{c1, c2, . . . , cn} if and only if Ax = b has a solution x for every vector b in
Rm.

For a square matrix A, Theorem 5.2.2 characterizes the invertibility of A in terms of the span-
ning and independence of its columns (see the discussion preceding Theorem 5.2.2). It is impor-
tant to be able to discuss these notions for rows. If x1, x2, . . . , xk are 1× n rows, we define
span{x1, x2, . . . , xk} to be the set of all linear combinations of the xi (as matrices), and we say
that {x1, x2, . . . , xk} is linearly independent if the only vanishing linear combination is the trivial
one (that is, if {xT

1 , xT
2 , . . . , xT

k } is independent in Rn, as the reader can verify).6

Theorem 5.2.3
The following are equivalent for an n×n matrix A:

1. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span Rn.

4. The rows of A are linearly independent.

5. The rows of A span the set of all 1×n rows.

Proof. Let c1, c2, . . . , cn denote the columns of A.
(1) ⇔ (2). By Theorem 2.4.5, A is invertible if and only if Ax = 0 implies x = 0; this holds if

and only if {c1, c2, . . . , cn} is independent by Theorem 5.2.2.
(1) ⇔ (3). Again by Theorem 2.4.5, A is invertible if and only if Ax = b has a solution for every

column B in Rn; this holds if and only if span{c1, c2, . . . , cn}= Rn by Theorem 5.2.2.
(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by Corollary 2.4.1 to

Theorem 2.4.4); this in turn holds if and only if AT has independent columns (by (1) ⇔ (2)); finally,
this last statement holds if and only if A has independent rows (because the rows of A are the
transposes of the columns of AT ).

(1) ⇔ (5). The proof is similar to (1) ⇔ (4).

Example 5.2.9

Show that S = {(2, −2, 5), (−3, 1, 1), (2, 7, −4)} is independent in R3.

Solution. Consider the matrix A =

 2 −2 5
−3 1 1

2 7 −4

 with the vectors in S as its rows. A

routine computation shows that det A =−117 6= 0, so A is invertible. Hence S is
independent by Theorem 5.2.3. Note that Theorem 5.2.3 also shows that R3 = span S.

6It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will
become redundant in Chapter 6 where we define the general notion of a vector space.
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Dimension

It is common geometrical language to say that R3 is 3-dimensional, that planes are 2-dimensional
and that lines are 1-dimensional. The next theorem is a basic tool for clarifying this idea of
“dimension”. Its importance is difficult to exaggerate.

Theorem 5.2.4: Fundamental Theorem
Let U be a subspace of Rn. If U is spanned by m vectors, and if U contains k linearly
independent vectors, then k ≤ m.

This proof is given in Theorem 6.3.2 in much greater generality.

Definition 5.4 Basis of Rn

If U is a subspace of Rn, a set {x1, x2, . . . , xm} of vectors in U is called a basis of U if it
satisfies the following two conditions:

1. {x1, x2, . . . , xm} is linearly independent.

2. U = span{x1, x2, . . . , xm}.

The most remarkable result about bases7 is:

Theorem 5.2.5: Invariance Theorem
If {x1, x2, . . . , xm} and {y1, y2, . . . , yk} are bases of a subspace U of Rn, then m = k.

Proof. We have k ≤ m by the fundamental theorem because {x1, x2, . . . , xm} spans U , and
{y1, y2, . . . , yk} is independent. Similarly, by interchanging x’s and y’s we get m ≤ k. Hence
m = k.

The invariance theorem guarantees that there is no ambiguity in the following definition:

Definition 5.5 Dimension of a Subspace of Rn

If U is a subspace of Rn and {x1, x2, . . . , xm} is any basis of U , the number, m, of vectors
in the basis is called the dimension of U , denoted

dim U = m

The importance of the invariance theorem is that the dimension of U can be determined by counting
the number of vectors in any basis.8

7The plural of “basis” is “bases”.
8We will show in Theorem 5.2.6 that every subspace of Rn does indeed have a basis.
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Let {e1, e2, . . . , en} denote the standard basis of Rn, that is the set of columns of the identity
matrix. Then Rn = span{e1, e2, . . . , en} by Example 5.1.6, and {e1, e2, . . . , en} is independent
by Example 5.2.2. Hence it is indeed a basis of Rn in the present terminology, and we have

Example 5.2.10

dim (Rn) = n and {e1, e2, . . . , en} is a basis.

This agrees with our geometric sense that R2 is two-dimensional and R3 is three-dimensional.
It also says that R1 = R is one-dimensional, and {1} is a basis. Returning to subspaces of Rn, we
define

dim{0}= 0

This amounts to saying {0} has a basis containing no vectors. This makes sense because 0 cannot
belong to any independent set (Example 5.2.4).

Example 5.2.11

Let U =


 r

s
r

 | r, s in R

. Show that U is a subspace of R3, find a basis, and calculate

dim U .

Solution. Clearly,

 r
s
r

= ru+ sv where u =

 1
0
1

 and v =

 0
1
0

. It follows that

U = span{u, v}, and hence that U is a subspace of R3. Moreover, if ru+ sv = 0, then r
s
r

=

 0
0
0

 so r = s = 0. Hence {u, v} is independent, and so a basis of U . This means

dim U = 2.

Example 5.2.12

Let B = {x1, x2, . . . , xn} be a basis of Rn. If A is an invertible n×n matrix, then
D = {Ax1, Ax2, . . . , Axn} is also a basis of Rn.

Solution. Let x be a vector in Rn. Then A−1x is in Rn so, since B is a basis, we have
A−1x = t1x1 + t2x2 + · · ·+ tnxn for ti in R. Left multiplication by A gives
x = t1(Ax1)+ t2(Ax2)+ · · ·+ tn(Axn), and it follows that D spans Rn. To show independence,
let s1(Ax1)+ s2(Ax2)+ · · ·+ sn(Axn) = 0, where the si are in R. Then
A(s1x1 + s2x2 + · · ·+ snxn) = 0 so left multiplication by A−1 gives s1x1 + s2x2 + · · ·+ snxn = 0.
Now the independence of B shows that each si = 0, and so proves the independence of D.
Hence D is a basis of Rn.
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While we have found bases in many subspaces of Rn, we have not yet shown that every subspace
has a basis. This is part of the next theorem, the proof of which is deferred to Section 6.4 (Theorem
6.4.1) where it will be proved in more generality.

Theorem 5.2.6
Let U 6= {0} be a subspace of Rn. Then:

1. U has a basis and dim U ≤ n.

2. Any independent set in U can be enlarged (by adding vectors from the standard basis)
to a basis of U .

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U .

Example 5.2.13

Find a basis of R4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, −1, 0, 1).

Solution. By Theorem 5.2.6 we can find such a basis by adding vectors from the standard
basis of R4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} is independent.
Now add another vector from the standard basis, say e2.
Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim R4 vectors, then
B must span R4 by Theorem 5.2.7 below (or simply verify it directly). Hence B is a basis of
R4.

Theorem 5.2.6 has a number of useful consequences. Here is the first.

Theorem 5.2.7
Let U be a subspace of Rn where dim U = m and let B = {x1, x2, . . . , xm} be a set of m
vectors in U . Then B is independent if and only if B spans U .

Proof. Suppose B is independent. If B does not span U then, by Theorem 5.2.6, B can be enlarged
to a basis of U containing more than m vectors. This contradicts the invariance theorem because
dim U = m, so B spans U . Conversely, if B spans U but is not independent, then B can be cut down
to a basis of U containing fewer than m vectors, again a contradiction. So B is independent, as
required.

As we saw in Example 5.2.13, Theorem 5.2.7 is a “labour-saving” result. It asserts that, given
a subspace U of dimension m and a set B of exactly m vectors in U , to prove that B is a basis of
U it suffices to show either that B spans U or that B is independent. It is not necessary to verify
both properties.
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Theorem 5.2.8
Let U ⊆W be subspaces of Rn. Then:

1. dim U ≤ dim W .

2. If dim U = dim W , then U =W .
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Proof. Write dim W = k, and let B be a basis of U .

1. If dim U > k, then B is an independent set in W containing more than k vectors, contradicting
the fundamental theorem. So dim U ≤ k = dim W .

2. If dim U = k, then B is an independent set in W containing k = dim W vectors, so B spans W
by Theorem 5.2.7. Hence W = span B =U , proving (2).

It follows from Theorem 5.2.8 that if U is a subspace of Rn, then dim U is one of the integers
0, 1, 2, . . . , n, and that:

dim U = 0 if and only if U = {0},
dim U = n if and only if U = Rn

The other subspaces of Rn are called proper. The following example uses Theorem 5.2.8 to show
that the proper subspaces of R2 are the lines through the origin, while the proper subspaces of R3

are the lines and planes through the origin.

Example 5.2.14

1. If U is a subspace of R2 or R3, then dim U = 1 if and only if U is a line through the
origin.

2. If U is a subspace of R3, then dim U = 2 if and only if U is a plane through the origin.

Proof.

1. Since dim U = 1, let {u} be a basis of U . Then U = span{u}= {tu | t in R}, so U is the line
through the origin with direction vector u. Conversely each line L with direction vector d 6= 0
has the form L = {td | t in R}. Hence {d} is a basis of U , so U has dimension 1.

2. If U ⊆ R3 has dimension 2, let {v, w} be a basis of U . Then v and w are not parallel (by
Example 5.2.7) so n = v×w 6= 0. Let P = {x in R3 | n ·x = 0} denote the plane through the
origin with normal n. Then P is a subspace of R3 (Example 5.1.1) and both v and w lie in
P (they are orthogonal to n), so U = span{v, w} ⊆ P by Theorem 5.1.1. Hence

U ⊆ P ⊆ R3

Since dim U = 2 and dim (R3) = 3, it follows from Theorem 5.2.8 that dim P = 2 or 3, whence
P = U or R3. But P 6= R3 (for example, n is not in P) and so U = P is a plane through the
origin.
Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 by Theorem 5.2.8.
But dim U 6= 0 or 3 because U 6= {0} and U 6= R3, and dim U 6= 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in R3, then span{v, w}
is the plane with normal n = v×w. We gave a geometrical verification of this fact in Section 5.1.
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Exercises for 5.2

In Exercises 5.2.1-5.2.6 we write vectors Rn as
rows.
Exercise 5.2.1 Which of the following subsets are
independent? Support your answer.

a. {(1, −1, 0), (3, 2, −1), (3, 5, −2)} in R3

b. {(1, 1, 1), (1, −1, 1), (0, 0, 1)} in R3

c. {(1, −1, 1, −1), (2, 0, 1, 0), (0, −2, 1, −2)}
in R4

d. {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1),
(0, 1, 0, 1)} in R4

b. Yes. If r

 1
1
1

+ s

 1
1
1

+ t

 0
0
1

 =

 0
0
0

,

then r+s= 0, r−s= 0, and r+s+t = 0. These
equations give r = s = t = 0.

d. No. Indeed:


1
1
0
0

 −


1
0
1
0

 +


0
0
1
1

 −


0
1
0
1

=


0
0
0
0

.

Exercise 5.2.2 Let {x, y, z, w} be an indepen-
dent set in Rn. Which of the following sets is inde-
pendent? Support your answer.

a. {x−y, y−z, z−x}

b. {x+y, y+z, z+x}

c. {x−y, y−z, z−w, w−x}

d. {x+y, y+z, z+w, w+x}

b. Yes. If r(x+y)+ s(y+z)+ t(z+x) = 0, then
(r+t)x+(r+s)y+(s+t)z= 0. Since {x, y, z}
is independent, this implies that r + t = 0,
r+ s = 0, and s+ t = 0. The only solution is
r = s = t = 0.

d. No. In fact, (x+y)− (y+z)+(z+w)− (w+
x) = 0.

Exercise 5.2.3 Find a basis and calculate the di-
mension of the following subspaces of R4.

a. span{(1, −1, 2, 0), (2, 3, 0, 3), (1, 9, −6, 6)}

b. span{(2, 1, 0, −1), (−1, 1, 1, 1), (2, 7, 4, 1)}

c. span{(−1, 2, 1, 0), (2, 0, 3, −1), (4, 4, 11, −3),
(3, −2, 2, −1)}

d. span{(−2, 0, 3, 1), (1, 2, −1, 0), (−2, 8, 5, 3),
(−1, 2, 2, 1)}

b.




2
1
0

−1

 ,


−1

1
1
1


; dimension 2.

d.




−2
0
3
1

 ,


1
2

−1
0


; dimension 2.

Exercise 5.2.4 Find a basis and calculate the di-
mension of the following subspaces of R4.

a. U =




a
a+b
a−b

b


∣∣∣∣∣∣∣∣a and b in R



b. U =




a+b
a−b

b
a


∣∣∣∣∣∣∣∣a and b in R


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c. U =




a
b

c+a
c


∣∣∣∣∣∣∣∣a, b, and c in R



d. U =




a−b
b+ c

a
b+ c


∣∣∣∣∣∣∣∣a, b, and c in R



e. U =




a
b
c
d


∣∣∣∣∣∣∣∣a+b− c+d = 0 in R



f. U =




a
b
c
d


∣∣∣∣∣∣∣∣a+b = c+d in R



b.




1
1
0
1

 ,


1

−1
1
0


; dimension 2.

d.




1
0
1
0

 ,


−1

1
0
1

 ,


0
1
0
1


; dimension 3.

f.




−1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1


; dimension 3.

Exercise 5.2.5 Suppose that {x, y, z, w} is a
basis of R4. Show that:

a. {x+aw, y, z, w} is also a basis of R4 for any
choice of the scalar a.

b. {x+w, y+w, z+w, w} is also a basis of R4.

c. {x, x+y, x+y+ z, x+y+ z+w} is also a
basis of R4.

b. If r(x+w) + s(y+w) + t(z+w) + u(w) = 0,
then rx+sy+tz+(r+s+t+u)w= 0, so r = 0,
s = 0, t = 0, and r + s+ t + u = 0. The only
solution is r = s = t = u = 0, so the set is inde-
pendent. Since dim R4 = 4, the set is a basis
by Theorem 5.2.7.

Exercise 5.2.6 Use Theorem 5.2.3 to determine if
the following sets of vectors are a basis of the indi-
cated space.

a. {(3, −1), (2, 2)} in R2

b. {(1, 1, −1), (1, −1, 1), (0, 0, 1)} in R3

c. {(−1, 1, −1), (1, −1, 2), (0, 0, 1)} in R3

d. {(5, 2, −1), (1, 0, 1), (3, −1, 0)} in R3

e. {(2, 1, −1, 3), (1, 1, 0, 2), (0, 1, 0, −3),
(−1, 2, 3, 1)} in R4

f. {(1, 0, −2, 5), (4, 4, −3, 2), (0, 1, 0, −3),
(1, 3, 3, −10)} in R4

b. Yes

d. Yes

f. No.

Exercise 5.2.7 In each case show that the state-
ment is true or give an example showing that it is
false.

a. If {x, y} is independent, then {x, y, x+y}
is independent.

b. If {x, y, z} is independent, then {y, z} is
independent.

c. If {y, z} is dependent, then {x, y, z} is de-
pendent for any x.

d. If all of x1, x2, . . . , xk are nonzero, then
{x1, x2, . . . , xk} is independent.

e. If one of x1, x2, . . . , xk is zero, then
{x1, x2, . . . , xk} is dependent.

f. If ax+by+cz = 0, then {x, y, z} is indepen-
dent.
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g. If {x, y, z} is independent, then ax+ by+
cz = 0 for some a, b, and c in R.

h. If {x1, x2, . . . , xk} is dependent, then t1x1 +
t2x2 + · · ·+ tkxk = 0 for some numbers ti in R
not all zero.

i. If {x1, x2, . . . , xk} is independent, then t1x1+
t2x2 + · · ·+ tkxk = 0 for some ti in R.

j. Every non-empty subset of a linearly indepen-
dent set is again linearly independent.

k. Every set containing a spanning set is again a
spanning set.

b. T. If ry + sz = 0, then 0x + ry + sz = 0 so
r = s = 0 because {x, y, z} is independent.

d. F. If x 6= 0, take k = 2, x1 = x and x2 =−x.

f. F. If y =−x and z = 0, then 1x+1y+1z = 0.

h. T. This is a nontrivial, vanishing linear com-
bination, so the xi cannot be independent.

Exercise 5.2.8 If A is an n×n matrix, show that
det A = 0 if and only if some column of A is a linear
combination of the other columns.

Exercise 5.2.9 Let {x, y, z} be a linearly indepen-
dent set in R4. Show that {x, y, z, ek} is a basis of
R4 for some ek in the standard basis {e1, e2, e3, e4}.

Exercise 5.2.10 If {x1, x2, x3, x4, x5, x6}
is an independent set of vectors, show that
the subset {x2, x3, x5} is also independent.

If rx2 + sx3 + tx5 = 0 then 0x1 + rx2 + sx3 + 0x4 +
tx5 +0x6 = 0 so r = s = t = 0.

Exercise 5.2.11 Let A be any m× n matrix, and
let b1, b2, b3, . . . , bk be columns in Rm such that
the system Ax = bi has a solution xi for each i. If
{b1, b2, b3, . . . , bk} is independent in Rm, show that
{x1, x2, x3, . . . , xk} is independent in Rn.

Exercise 5.2.12 If {x1, x2, x3, . . . , xk}
is independent, show {x1, x1 + x2, x1 + x2 +
x3, . . . , x1 + x2 + · · · + xk} is also independent.

If t1x1 + t2(x1 +x2)+ · · ·+ tk(x1 +x2 + · · ·+xk) = 0,
then (t1+t2+ · · ·+tk)x1+(t2+ · · ·+tk)x2+ · · ·+(tk−1+
tk)xk−1 + (tk)xk = 0. Hence all these coefficients
are zero, so we obtain successively tk = 0, tk−1 =
0, . . . , t2 = 0, t1 = 0.

Exercise 5.2.13 If {y, x1, x2, x3, . . . , xk} is inde-
pendent, show that {y+x1, y+x2, y+x3, . . . , y+
xk} is also independent.

Exercise 5.2.14 If {x1, x2, . . . , xk} is independent
in Rn, and if y is not in span{x1, x2, . . . , xk}, show
that {x1, x2, . . . , xk, y} is independent.

Exercise 5.2.15 If A and B are matrices and
the columns of AB are independent, show that the
columns of B are independent.

Exercise 5.2.16 Suppose that {x, y} is a basis of

R2, and let A =

[
a b
c d

]
.

a. If A is invertible, show that {ax+by, cx+dy}
is a basis of R2.

b. If {ax+ by, cx+ dy} is a basis of R2, show
that A is invertible.

b. We show AT is invertible (then A is invert-
ible). Let AT x = 0 where x = [s t]T . This
means as+ ct = 0 and bs+ dt = 0, so s(ax+
by)+ t(cx+ dy) = (sa+ tc)x+(sb+ td)y = 0.
Hence s = t = 0 by hypothesis.

Exercise 5.2.17 Let A denote an m×n matrix.

a. Show that null A = null (UA) for every invert-
ible m×m matrix U .

b. Show that dim (null A) = dim (null (AV )) for
every invertible n × n matrix V . [Hint: If
{x1, x2, . . . , xk} is a basis of null A, show
that {V−1x1, V−1x2, . . . , V−1xk} is a basis of
null (AV ).]

b. Each V−1xi is in null (AV ) because
AV (V−1xi) = Axi = 0. The set
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{V−1x1, . . . , V−1xk} is independent as V−1

is invertible. If y is in null (AV ), then Vy is in
null (A) so let Vy = t1x1+ · · ·+ tkxk where each
tk is in R. Thus y = t1V−1x1 + · · ·+ tkV−1xk is
in span{V−1x1, . . . , V−1xk}.

Exercise 5.2.18 Let A denote an m×n matrix.

a. Show that im A = im (AV ) for every invertible
n×n matrix V .

b. Show that dim ( im A) = dim ( im (UA)) for ev-
ery invertible m × m matrix U . [Hint: If
{y1, y2, . . . , yk} is a basis of im (UA), show

that {U−1y1, U−1y2, . . . , U−1yk} is a basis of
im A.]

Exercise 5.2.19 Let U and W denote subspaces of
Rn, and assume that U ⊆W . If dim U = n−1, show
that either W =U or W = Rn.

Exercise 5.2.20 Let U and W denote subspaces of
Rn, and assume that U ⊆W . If dim W = 1, show that
either U = {0} or U =W .
We have {0} ⊆ U ⊆ W where dim{0} = 0 and
dim W = 1. Hence dim U = 0 or dim U = 1 by The-
orem 5.2.8, that is U = 0 or U =W , again by Theo-
rem 5.2.8.
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